Departmental Practical | Course
Type | Course
Code | Name of Course | L | Т | P | Credit | |----------------|----------------|-----------------------------|---|---|---|--------| | DP | NCEC512 | Computational Laboratory-II | 0 | 0 | 3 | 1.5 | ## **Course Objective** The course aims at imparting knowledge on computational aspect of Civil Engineering ## **Learning Outcomes** Upon successful completion of this course, the students should be able to: • Learn the theories in mechanics of geomaterials, mechanics of deformable solids, engineering hydrology and hydraulics and transport system design & management | Unit
No. | Topics to be Covered | Contact
Hours [P] | Learning Outcome | | |-------------|--|----------------------|--|--| | 1 | Problem-1: Slope and Seepage Analysis, Earthquake Analysis of Geostructures | 03 | Learn to solve the slope stability
and seepage analysis problems
using Finite Element Method | | | 2 | Problem-2: Analysis and Design of Mechanically Stabilized Earth Retaining Walls | 03 | Learn to design the reinforced earth structures using Finite Element Method | | | 3 | Problem-3: Footing on Clayey soil using modified cam-clay model | 03 | Application of critical state mechanics | | | 4 | Problem-4: Introduction to Discrete Element Method | 03 | Application of Discrete Element Method | | | 5 | Problem-5 : Problem on fitting desired probability distribution on hydrological data. | 03 | Application of probability theory | | | 6 | Problem-6 : Problem on flood frequency analysis | 03 | Learn to estimate return period of floods | | | 7 | Problem-7: Problem of computing standardized indices of hydrological extremes | 03 | Learn to identify and quantify extreme events | | | 8 | Problem-8: To identify the shortest and most efficient commuter routes within an urban area | 03 | Learn to analyze shortest path, set up network data, and propose optimized routes | | | Unit
No. | Topics to be Covered | Contact
Hours [P] | Learning Outcome | | |-------------|---|----------------------|---|--| | 9 | Problem-9: To assess and map public transport accessibility within a city, identifying underserved areas that require enhanced transit coverage. | 03 | Learn to create service area
buffers, overlay demographic
data, and analyze transi
accessibility | | | 10 | Problem-10: To identify high-risk areas for traffic accidents within a city to prioritize road safety improvements. | 03 | A heatmap identifying accident
hotspots, supporting targeted
interventions for road safety
improvements in high-risk areas | | | 11. | Problem-11: Solution of 3D Bernoulli frame by using the finite element method through programming in MATLAB®. | 03 | Learn to write program in finite element method to solve frame problems. | | | 12. | Problem-12: Solution of Kirchhoff plate by using the finite element method through programming in MATLAB®. | 03 | Learn to write program in finite element method to solve plate problems. | | | 13. | Problem-13: Solution of plane stress/plane strain problems by using the finite element method through ANSYS®/ABAQUS® software. | 03 | Learn to use finite element based software to solve 2D problems. | | | 14. | Problem-14: Solution of 2D frames by using the finite element method through ANSYS®/ABAQUS® software. | 03 | Learn to use finite element based software to solve 2D frames. | | | | Total | 42 | | | ## **Text Books:** - 1. Budhu, M. (2010). Soil Mechanics and Foundations, 3rdEdition, Wiley. - 2. Ferreira, A. J. (2009). MATLAB codes for finite element analysis. Amsterdam: Springer Netherlands. - 3. Maity, R. (2018). Statistical methods in hydrology and hydroclimatology (Vol. 585). Springer. - 4. Sarkar, P.K., Maitri, V., and Joshi, G.J. (2016). Transportation Planning, Principles, Practices and Policies, PHI Pvt. Ltd.